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The effect of instability of the properties of a material that change deterministically or randomly with 

time when acted upon by random longitudinal forces is investigated. This investigation is an extension 

of the results of previous work [l-4] on the stability of visco-stsatic bars with stable properties. 

Attention is concentrated on ageing, the random distribution of visco-elastic properties, and external 

damping. 

1. STABILITY OF A BAR OF AGEING MATERIAL UNDER THE ACTION OF A 
RANDOM STATIONARY LONGITUDINAL FORCE 

THE MOTION of a bar under the action of a longitudinal force F is described by the equation 

E(r)IwW + [l+ E(t)K]P = 0 (1.1) 

P= Fw”+miC+ki 

KP = ; K(t,QP(Q&, K(r,z) = 
b 

-&[&+cw] 

where k is a damping factor which takes account of external resistance to the motion of the bar 
and C(T, T) is a measure of the creep of the material. The remaining notation is the same as 
that generally used. 

Henceforth we shall assume [5] that 

C(t,z) = cp(z)[l - e-~(t-z)] (1.2) 

The solution of Eq. (1.1) should of course satisfy the initial and boundary conditions. 
We will introduce the functions 

zl=KP 

z2 = j 

b 

which are solutions of the equations 
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We will assume that the deflection of the bar and its rate of change at the initial instant of 
time is given by the expressions 

w(O,x) = w” sin 5, i(0, x) = v” sin ‘Ex 
1 1 

We will seek a solution of Eqs (1.1) and (1.3) in the form 

W(&X) = ffl)si+ x 

After substituting these expressions into Eqs (1.1) and (1.3) we obtain 

f* =m[~~)+ycp(t)lt~+2j-02a~~)fl-Yf4 

Here 

2e ,k @2 x4Eol a(t)_ NV2 
m’ =m14* a2Eoi 

(1.4 

and .I& is some (constant) value of the modulus of eiasticity (for example, E,, =liifn(r), if such 
a limit exists). 

We will represent the system of equations (1.4) in the form of a first-order system (fi = f) 

f; =f2 

f2 =-2Ef2 -c&p E&(t) fi -= f3 
[ 1 Eo m 

f4 = 4+(r) + yrp(t)l nto2 y fi + EWf3 1 - Yf4 

In the special case when E(t) = E,, cp(t) = K/E, = const, it can be seen from (1.2) that z, = zq. 
It then foIIows from Eqs (1.4) that 
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f2 =-2Ef2 -o2[La(t)lfi -$ f3 

A=-r 
[ 

$&A +(I+ir)f, 1 
We will further assume that the longitudinal force is a random stationary process o(t)= 

a, + o,(t) with mathematical expectation (a(t)) = Q, = const and random fluctuations a,(t) 
proportional to “white noise” E,(T), i.e. a,(r) = K(t) and b = const. We shall obtain equations 
for the statistical moments of the functions fi’ (i = 1, 2,3,4). 

The mathematical expectations of these functions are found from the equations [6,7] 

I[ 
MO ‘~(h)+EW(f~)]-r(fd) 

1 > fa mo2~(f,)+E(r)(f,) 
I 

-r(fb) 

where the angle brackets denote averaging over the set of samples. 
If the functions E(t) and cp(t) increase with time towards constant values E, and cp,, then one 

can verify that the bar will be stable in terms of the mathematical expectation of the deflection 
if the condition 

is satisfied. 
Note that this relation is identical with the condition for the stability of a visco-elastic bar of 

ageing material in the deterministic version of the problem. 
The equations for the second-order moments can be written as follows: 

3 h2)= $x2) 

$ (hf2)=(fi2)-2E(hf2)-~2 F-a0 
[ 1 (h’)-%(fih) 
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-++&)}+~4B2(h*) 

~(hh)=-2E(fiA)-o2[~-ao](Xk)- 

_L--!.i f; - 
()[ 

$k+w(t) [mo2~(m)+ 
I 

+w( f*f3)1- Y( f2f4) 

d 

z 34 
(ff)=-[ 

x mo*~(fifi)+ECi)(f:)]-~(f3A,) 
[ 

$(6)= - 2[(N) + ycpw1 ?mJl 1 -2Y(f42) 

If the functions E(f) and cp(t) tend to constant values as t + 00, then the root-mean-square 
stability condition for the bar will be identical with the condition for the solution of the limiting 
system of Eqs (1.5), obtained from (1.5) as t + w [4,8], to be stable. 

We remark that the nature of the stability of a bar of ageing material, both for its expectation 
and its mean-square, differs from the nature of the bar stability when the material does not age. 
In the latter case the stability is asymptotic, which does not happen in the first case. 

We considered above a bar for which the material creep measure was governed by expres- 
sion (1.2). There is a more general expression [5] of the form 

c(f, Z) = (p( 2) : Bk exp[--y, (t - r)l, Bk , “/k - const 
k=O 

It can be shown that in this case too the solution of the problem, by extending the phase 
space, can be reduced to considering a system of first-order equations, but of higher order [4]. 

2. STABILITY OF A VISCO-ELASTIC BAR WHOSE VISCO-ELASTIC 
CHARACTERISTICS ARE RANDOM FUNCTIONS 

We will write the bar equations of motion in the form 

EI(l- R)w'V+Fw"+m~+kti=O (2.1) 
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Rw = ; R(t,z)w(z,x) dz 
0 

where I?@, z) is the relaxation kernel of the material, which we will take in the form 

R&T) = M(z)exp 

We again look for a solution of Eq. (2.1) in the form of a single half-wave sinusoid and write 
the equation for its amplit~e f 

we set 

men Eqs (2.2) and (2.3) can be represented as a system of first-order diffemhal equations 

i;=& A=-z~-~2rQ-a~fi-~l* f;=wi-ej CW 

Henceforth we shall assume that 01, e, M and K are stationary processes with constant 
mathematical expectations and that the random fluctuations are proportional to white noise 

where gi (i=l, . . .) 4) are uncorrelated white noise. 
We write system (2.4) as an Itu [6] system of equations 

If the Z$ are taken to be white noise in the S~atonovich sense [6], then in the last two 
equations of system (2.5) one must replace E, by E, -et and 4 by rcO - K: E 2. 

Equations for the first- and second-order statistical moments [6,7) follow from (2.5). 
Using the Routh-Hurwitz criterion one can show that the motion of the bar is stable with 

respect to first-order moments if the conditions 

%4-K& Ck, - It0 white noise) 

a, <: 1 -M,[K,(~ - p,)]’ (5, - Stratonovich white noise) 

p = lc: /(2K*) 

are satisfied. 
The first of the conditions is identical with the bar stabibty condition in the deterministic 

problem. The second condition is more restrictive (for K: / 2 c K,,). According to the second 
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inequality, beyond some value of K, the bar is only stable when the mean longitudinal force is a 
strain. 

The conditions for the motion of the bar to be stable with respect to the second-order 
moments are very complex. For Ito white noise we obtain 

-402p2hffJ - 2(&* -e:)M;1-4(1-a,)@~ -&;)&J+ 

+t1.-ab)(2~~--~)[W2~2f2+2(1-~~)(&~-&:)-N0]t 

+<2& +M&)+(2&O + K~)(2qJ - KF)X 

x[--Xl- Qg )ql (Eg -E:)/02+B2KO/2+2MO(&O-E~)/U*]<0 (2.6) 

Analysis of this reaction for the general case is very difficult. We will therefore consider 
some special cases that are of practical interest. 

1. The external resistance and v&co-elastic material properties are deterministic (q = M, = 
K, = 0). The stability condition that follows from inequality (2.6) are identical with that ob- 
tained previously (41. The restriction on g” turns out to be independent of the particular white 
noise 5, that we are co~ide~ng (whether Ito or Stratonovich). 

2. The external resistance and statistical spread of M are ignored (E, = E, = M, = 0). It follows 
from (2.6) that 

(2.7) 

One can verify that when p< 1 in the case under consideration, stronger restrictions are 
imposed on the scatter of the longitudinal force than in the preceding case (with E, = 0). 

If & is taken to be Stratonovich white noise, then in inequality (2.7) one should replace K, 
by the difference K, - K: / 2. 

3. The external friction and statistical spread of K are ignored (q, = q = rcI = 0). Relation (2.6) 
acquires the form 

iB2b2 < 2Mo[g-@ /(2f%f,)](b+K; /CO*)-’ (2.9 

6=1--CXo -bfo/KO 

It is clear that in this case the upper restriction on p” is stiffer than in case 1 (with E, = 0). 
Condition (2.8) is independent of whether the white noise 5, is that of Ito or Stratonovich. 

4, Deter~n~tic vis~o-el~tic materi~ character~tics (M, = rr, = 0). From inequality (2.6) we 
have 

a2f12 < 26[6 + K. (2Eo + Ko) / a2 1-l x 

x[2(1- oo)(eo - &~)+~o+2Ko(2EO+Kg)(Eg-E:)/~2~ 

and we again conclude that mean-square stability of the bar is possible at smaller values of the 
intensity coefficient p than in case 1. 

If k2 is Stratonovich white noise, then E, must be replaced by E, --a;. 
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